

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,3-Bis(thiophen-2-yl)pyrazine[2,3-f]-[1,10]phenanthroline

Chang-Ge Zheng,* Jun Kong, Peng Zhang and Wen-Xian Dong

School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, People's Republic of China, and Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Road, Shanghai 200032, People's Republic of China Correspondence e-mail: cgzheng@jiangnan.edu.cn

Received 2 February 2012; accepted 6 April 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.063; wR factor = 0.130; data-to-parameter ratio = 15.3.

The molecule of the title compound, $C_{22}H_{12}N_4S_2$, shows no crystallographic symmetry. The thiophene rings form different dihedral angles $[40.15 (9) \text{ and } 15.43 (10)^{\circ}]$ with the pyrazine ring. A strong $\pi - \pi$ stacking interaction occurs between adjacent pyrazine [2,3-f][1,10] phenanthroline units with an interplanar distance of 3.4352 (16) Å.

Related literature

For the structure of 2,3-dithienylpyrazine[2,3-f]-1,10-phenanthroline, see: Chen & Li (2004). For the properties of 2,3dithienylpyrazine[2,3-f]-1,10-phenanthroline, see: Armaroli et al. (1992); Aragoni et al. (2002); Bencini et al. (1999).

Experimental

Crystal data

$C_{22}H_{12}N_4S_2$	$V = 3418.1 (15) \text{ Å}^3$
$M_r = 396.48$	Z = 8
Monoclinic, $C2/c$	Mo $K\alpha$ radiation
a = 27.016 (5) Å	$\mu = 0.33 \text{ mm}^{-1}$
b = 10.267 (2) Å	T = 293 K
c = 13.835 (3) Å	$0.30 \times 0.30 \times 0.10 \text{ mm}$
$\beta = 117.04 \ (3)^{\circ}$	

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min}=0.763,\;T_{\rm max}=1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.063$ $wR(F^2) = 0.130$ S = 1.143867 reflections

9577 measured reflections 3867 independent reflections 3057 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.039$

253 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.41 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.45$ e Å⁻³

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

The authors are grateful for financial support from the Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AA2049).

References

- Aragoni, M. C., Arca, M., Demartin, F., Devillanova, F. A., Isaia, F., Garau, A., Lippolis, V., Jalali, F., Papke, U., Shamsipur, M., Tei, L., Yari, A. & Verani, G. (2002). Inorg. Chem. 41, 6623-6632.
- Armaroli, N., Cola, L. D., Balzani, V., Sauvage, J. P., Buchecker, C. O. D. & Kern, J. M. (1992). J. Chem. Soc. Faraday Trans. 88, 553-556.
- Bencini, A., Bernardo, M. A., Bianchi, A., Fusi, V., Giorgi, C., Pina, F. & Valtancoli, B. (1999). Eur. J. Inorg. Chem. pp. 1911-1918.
- Bruker (2005). APEX2 and SAINT. Bruker Axs Inc., Madison, Wisconsin, USA.
- Chen, J. P. & Li, X. C. C. (2004). US Patent 6713781 B1.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2012). E68, o1443 [doi:10.1107/S160053681201522X]

2,3-Bis(thiophen-2-yl)pyrazine[2,3-f][1,10]phenanthroline

Chang-Ge Zheng, Jun Kong, Peng Zhang and Wen-Xian Dong

Comment

2,3-Dithienylpyrazine[2,3-*f*]-1,10-phenanthroline as a ligand is widely used as analytical probes, such as proton, ion sensors and organic light-emitting devices (Armaroli *et al.*, 1992; Aragoni *et al.*, 2002; Bencini *et al.*, 1999; Chen & Li, 2004), due to its rigid structure and fluorescence property.

The molecule of the title compound, $C_{22}H_{12}N_4S_2$, is chemically symmetric but it shows no crystallographic symmetry. The dihedral angles between thiophene rings and pyrazine ring are 40.15 (9)° and 15.43 (10)°, respectively. The strong π - π stacking occurs in the crystal structure between parallel pyrazine[2,3-*f*]-1,10-phenanthroline molecules, the interplanar distance is 3.4352 (16) Å.

Experimental

The title compound was synthesized by using 1,10-phenanthroline as the starting material according to the published route (Chen & Li, 2004). The single crystals were obtained by recrystallization from the mixture of methanol and methylene chloride at room temperature.

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distance of 0.93 Å, and with $U_{iso}(H)=1.2U_{iso}(C)$.

Computing details

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT* (Bruker, 2005); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

Figure 1

The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.

2,3-Bis(thiophen-2-yl)pyrazine[2,3-f][1,10]phenanthroline

Crystal data	
$C_{22}H_{12}N_4S_2$	F(000) = 1632
$M_r = 396.48$	$D_{\rm x} = 1.541 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, C2/c	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 7427 reflections
a = 27.016 (5) Å	$\theta = 3.0-27.5^{\circ}$
b = 10.267 (2) Å	$\mu = 0.33 \text{ mm}^{-1}$
c = 13.835 (3) Å	T = 293 K
$\beta = 117.04 (3)^{\circ}$	Block, yellow
$V = 3418.1 (15) Å^3$	$0.30 \times 0.30 \times 0.10 \text{ mm}$
Z = 8	

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 28.5714 pixels mm ⁻¹ phi and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.763, T_{\max} = 1.000$	9577 measured reflections 3867 independent reflections 3057 reflections with $I > 2\sigma(I)$ $R_{int} = 0.039$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 3.1^{\circ}$ $h = -34 \rightarrow 34$ $k = -13 \rightarrow 11$ $l = -17 \rightarrow 15$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.063$ $w R(F^2) = 0.120$	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from
S = 1.14	H-atom parameters constrained
3867 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0537P)^2 + 1.3889P]$
253 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.41 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.45 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.20867 (3)	0.16082 (6)	0.37184 (6)	0.0384 (2)	
S2	0.10144 (3)	-0.41137 (6)	0.25638 (6)	0.0385 (2)	
C13	-0.00055 (10)	0.1677 (2)	0.12409 (19)	0.0261 (5)	
C16	-0.04190 (9)	-0.0932 (2)	0.07706 (18)	0.0253 (5)	
N4	-0.09519 (9)	0.2440 (2)	0.02141 (17)	0.0345 (5)	
C11	0.03747 (9)	0.0587 (2)	0.16463 (18)	0.0245 (5)	
C12	0.01743 (9)	-0.0683 (2)	0.14262 (18)	0.0245 (5)	
N1	0.09256 (8)	0.08207 (19)	0.21974 (15)	0.0259 (4)	
C9	0.10654 (9)	-0.1492 (2)	0.24045 (18)	0.0243 (5)	
N2	0.05183 (8)	-0.17051 (19)	0.18208 (15)	0.0260 (4)	
N3	-0.13437 (8)	-0.0055 (2)	-0.02387 (16)	0.0318 (5)	
C15	-0.07901 (9)	0.0118 (2)	0.03844 (18)	0.0264 (5)	
C14	-0.05811 (10)	0.1460 (2)	0.06220 (18)	0.0274 (5)	
C10	0.12755 (9)	-0.0183 (2)	0.25369 (18)	0.0244 (5)	
C18	-0.11870 (11)	-0.2366 (3)	-0.0142 (2)	0.0362 (6)	
H18	-0.1337	-0.3196	-0.0343	0.043*	

C19	-0.15243 (10)	-0.1264 (3)	-0.0490 (2)	0.0363 (6)
H19	-0.1902	-0.1389	-0.0929	0.044*
C2	0.18659 (10)	0.0169 (2)	0.30092 (19)	0.0267 (5)
C6	0.13841 (10)	-0.2672 (2)	0.28959 (18)	0.0260 (5)
C1	0.22833 (10)	-0.0375 (3)	0.28392 (19)	0.0307 (6)
H1	0.2246	-0.1151	0.2465	0.037*
C5	0.19175 (10)	-0.2883 (3)	0.36968 (19)	0.0312 (6)
Н5	0.2183	-0.2229	0.3993	0.037*
C3	0.27773 (10)	0.0370 (3)	0.3294 (2)	0.0358 (6)
H3	0.3099	0.0135	0.3251	0.043*
C21	-0.01907 (11)	0.3958 (3)	0.0982 (2)	0.0426 (7)
H21	-0.0073	0.4821	0.1076	0.051*
C8	0.15717 (11)	-0.4972 (3)	0.3474 (2)	0.0394 (7)
H8	0.1568	-0.5866	0.3581	0.047*
C20	-0.07546 (11)	0.3638 (3)	0.0395 (2)	0.0390 (7)
H20	-0.1007	0.4319	0.0113	0.047*
C17	-0.06273 (10)	-0.2195 (3)	0.0506 (2)	0.0332 (6)
H17	-0.0391	-0.2909	0.0764	0.040*
C4	0.27329 (10)	0.1460 (3)	0.3795 (2)	0.0381 (7)
H4	0.3019	0.2056	0.4140	0.046*
C22	0.01805 (11)	0.2963 (2)	0.1410 (2)	0.0340 (6)
H22	0.0557	0.3143	0.1815	0.041*
C7	0.20172 (10)	-0.4207 (3)	0.4020 (2)	0.0344 (6)
H7	0.2355	-0.4514	0.4553	0.041*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
S 1	0.0269 (3)	0.0271 (3)	0.0511 (4)	-0.0011 (3)	0.0089 (3)	-0.0050 (3)
S2	0.0289 (4)	0.0258 (3)	0.0491 (4)	-0.0013 (3)	0.0075 (3)	0.0031 (3)
C13	0.0225 (12)	0.0267 (13)	0.0261 (12)	0.0035 (10)	0.0085 (10)	0.0005 (10)
C16	0.0202 (11)	0.0317 (13)	0.0231 (11)	0.0009 (10)	0.0089 (9)	0.0029 (10)
N4	0.0266 (11)	0.0325 (12)	0.0386 (12)	0.0080 (9)	0.0096 (10)	0.0036 (10)
C11	0.0197 (11)	0.0297 (13)	0.0236 (12)	0.0034 (10)	0.0093 (9)	0.0021 (10)
C12	0.0225 (12)	0.0267 (12)	0.0242 (11)	0.0015 (10)	0.0105 (9)	0.0012 (10)
N1	0.0210 (10)	0.0258 (10)	0.0271 (10)	0.0020 (8)	0.0077 (8)	0.0001 (9)
C9	0.0223 (12)	0.0258 (12)	0.0238 (11)	0.0011 (9)	0.0096 (9)	0.0005 (10)
N2	0.0212 (10)	0.0274 (11)	0.0262 (10)	0.0008 (8)	0.0079 (8)	0.0010 (9)
N3	0.0218 (10)	0.0381 (12)	0.0305 (11)	-0.0004 (9)	0.0074 (9)	0.0013 (10)
C15	0.0211 (12)	0.0328 (13)	0.0243 (12)	0.0022 (10)	0.0092 (10)	0.0044 (10)
C14	0.0230 (12)	0.0335 (13)	0.0251 (12)	0.0046 (10)	0.0106 (10)	0.0016 (11)
C10	0.0210 (12)	0.0264 (12)	0.0233 (12)	0.0029 (10)	0.0077 (9)	0.0020 (10)
C18	0.0293 (14)	0.0332 (14)	0.0412 (15)	-0.0082 (11)	0.0117 (12)	-0.0007 (12)
C19	0.0182 (12)	0.0503 (17)	0.0353 (14)	-0.0029 (12)	0.0077 (10)	0.0054 (13)
C2	0.0237 (12)	0.0233 (12)	0.0279 (12)	-0.0011 (9)	0.0071 (10)	0.0027 (10)
C6	0.0221 (12)	0.0245 (12)	0.0284 (12)	0.0001 (9)	0.0089 (10)	-0.0002 (10)
C1	0.0243 (12)	0.0342 (14)	0.0315 (13)	0.0010 (11)	0.0108 (10)	0.0010 (11)
C5	0.0257 (13)	0.0311 (14)	0.0311 (13)	0.0022 (10)	0.0080 (10)	0.0045 (11)
C3	0.0226 (13)	0.0481 (17)	0.0348 (14)	0.0024 (12)	0.0113 (11)	0.0099 (13)
C21	0.0339 (15)	0.0288 (14)	0.0552 (18)	0.0039 (11)	0.0117 (13)	-0.0015 (13)

supplementary materials

C8	0.0373 (15)	0.0282 (14)	0.0492 (17)	0.0078 (12)	0.0167 (13)	0.0104 (13)
C20	0.0330 (14)	0.0303 (14)	0.0443 (16)	0.0113 (12)	0.0094 (12)	0.0040 (12)
C17	0.0268 (13)	0.0314 (14)	0.0368 (14)	0.0008 (11)	0.0104 (11)	0.0034 (12)
C4	0.0225 (13)	0.0377 (15)	0.0418 (15)	-0.0073 (11)	0.0041 (11)	0.0071 (13)
C22	0.0247 (13)	0.0293 (13)	0.0417 (15)	0.0030 (10)	0.0097 (11)	-0.0014 (12)
C7	0.0265 (13)	0.0337 (14)	0.0363 (14)	0.0067 (11)	0.0083 (11)	0.0085 (12)

Geometric parameters (Å, °)

S1—C4	1.707 (3)	C18—C17	1.374 (3)
S1—C2	1.723 (2)	C18—C19	1.394 (4)
S2—C8	1.704 (3)	C18—H18	0.9300
S2—C6	1.727 (2)	С19—Н19	0.9300
C13—C22	1.395 (3)	C2—C1	1.371 (3)
C13—C14	1.411 (3)	C6—C5	1.378 (3)
C13—C11	1.449 (3)	C1—C3	1.414 (3)
C16—C17	1.394 (3)	C1—H1	0.9300
C16—C15	1.402 (3)	C5—C7	1.418 (4)
C16—C12	1.462 (3)	С5—Н5	0.9300
N4—C20	1.318 (3)	C3—C4	1.351 (4)
N4—C14	1.349 (3)	С3—Н3	0.9300
C11—N1	1.350 (3)	C21—C22	1.364 (4)
C11—C12	1.391 (3)	C21—C20	1.401 (4)
C12—N2	1.343 (3)	C21—H21	0.9300
N1—C10	1.331 (3)	C8—C7	1.345 (4)
C9—N2	1.342 (3)	C8—H8	0.9300
C9—C10	1.437 (3)	С20—Н20	0.9300
С9—С6	1.463 (3)	C17—H17	0.9300
N3—C19	1.321 (3)	C4—H4	0.9300
N3—C15	1.356 (3)	С22—Н22	0.9300
C15—C14	1.468 (3)	С7—Н7	0.9300
C10—C2	1.467 (3)		
C4—S1—C2	92.22 (13)	C1—C2—C10	129.5 (2)
C8—S2—C6	92.10 (13)	C1—C2—S1	110.35 (18)
C22—C13—C14	117.7 (2)	C10—C2—S1	119.32 (18)
C22—C13—C11	121.9 (2)	C5—C6—C9	133.1 (2)
C14—C13—C11	120.3 (2)	C5—C6—S2	110.26 (19)
C17—C16—C15	118.8 (2)	C9—C6—S2	116.07 (17)
C17—C16—C12	121.6 (2)	C2—C1—C3	112.8 (2)
C15—C16—C12	119.6 (2)	C2—C1—H1	123.6
C20—N4—C14	117.2 (2)	C3—C1—H1	123.6
N1—C11—C12	120.7 (2)	C6—C5—C7	112.5 (2)
N1—C11—C13	119.1 (2)	С6—С5—Н5	123.7
C12—C11—C13	120.2 (2)	С7—С5—Н5	123.7
N2—C12—C11	121.0 (2)	C4—C3—C1	113.0 (2)
N2—C12—C16	118.4 (2)	C4—C3—H3	123.5
C11—C12—C16	120.5 (2)	C1—C3—H3	123.5
C10—N1—C11	119.0 (2)	C22—C21—C20	117.9 (3)
N2-C9-C10	119.5 (2)	C22—C21—H21	121.1

N2—C9—C6	113.5 (2)	C20—C21—H21	121.1
C10—C9—C6	126.9 (2)	C7—C8—S2	112.2 (2)
C9—N2—C12	119.1 (2)	С7—С8—Н8	123.9
C19—N3—C15	117.3 (2)	S2—C8—H8	123.9
N3—C15—C16	122.1 (2)	N4—C20—C21	124.6 (2)
N3—C15—C14	117.8 (2)	N4—C20—H20	117.7
C16—C15—C14	120.0 (2)	C21—C20—H20	117.7
N4—C14—C13	122.7 (2)	C18—C17—C16	118.9 (2)
N4—C14—C15	118.0 (2)	С18—С17—Н17	120.5
C13—C14—C15	119.3 (2)	С16—С17—Н17	120.5
N1—C10—C9	120.2 (2)	C3—C4—S1	111.7 (2)
N1-C10-C2	114.8 (2)	C3—C4—H4	124.2
C9—C10—C2	125.0 (2)	S1—C4—H4	124.2
C17—C18—C19	118.3 (2)	C21—C22—C13	119.9 (2)
C17—C18—H18	120.9	C21—C22—H22	120.0
C19—C18—H18	120.9	C13—C22—H22	120.0
N3—C19—C18	124.5 (2)	C8—C7—C5	112.9 (2)
N3—C19—H19	117.7	С8—С7—Н7	123.5
С18—С19—Н19	117.7	С5—С7—Н7	123.5